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Abstract. The σ-ω coupling is introduced phenomenologically in the linear σ-ω model to study the nuclear
matter properties. It is shown that not only the effective nucleon mass M∗ but also the effective σ meson
mass m∗

σ and the effective ω meson mass m∗
ω are nucleon-density–dependent. When the model parameters

are fitted to the nuclear saturation point, with the nuclear radius constant r0 = 1.14 fm and volume energy
a1 = 16.0 MeV, as well as to the effective nucleon mass M∗ = 0.85M , the model yields m∗

σ = 1.09mσ and
m∗

ω = 0.90mω at the saturation point, and the nuclear incompressibility K0 = 501 MeV. The lowest value
of K0 given by this model by adjusting the model parameters is around 227 MeV.

PACS. 21.65.+f Nuclear matter – 24.10.Jv Relativistic models

1 Introduction

As the starting point for the microscopic relativistic de-
scription of nuclear many-body system, within the frame-
work of quantum hadrodynamics, the well-studied linear
σ-ω model has been proved to be able to describe the satu-
ration and other properties of nuclear matter [1]. However,
this model yields the nuclear incompressibility K0 around
550 MeV which is unacceptably high, and also the effective
nucleon mass M∗ around 0.54M which seems uncomfort-
ably low. In order to remedy this situation, many works
have been done on the extension or generalization of this
model [2]. Among others, the inclusion of nonlinear self-
interaction of σ mesons, introduced originally by Boguta
and Bodmer [3], is shown to be successful in reducing the
nuclear incompressibility K0 significantly. Along this line,
the nonlinear self-interaction of ω mesons has been in-
cluded also in the relativistic mean-field theory [4]. On the
other hand, the derivative scalar coupling, which contains
higher powers of σ in couplings between nucleon and σ
meson as well as a coupling between σ and ω mesons, has
been proposed and investigated extensively [5,6]. Follow-
ing these two lines, many types of coupling between nu-
cleon, σ, ω and ρ mesons are included in the nuclear effec-
tive field theory by Furnstahl, Serot and Tang recently, in
addition to the above-mentioned nonlinear self-interaction
of σ and ω mesons [7]. In this case, as the first step, it is
worthwhile to investigate in more detail the effects of each
type of coupling between nucleon, σ, ω and ρ mesons sep-
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arately, before getting combined result by data fit to all
of these couplings simultaneously.

The purpose of this paper is to investigate what is the
effect on nuclear matter properties due to a σ-ω coupling,
which is introduced phenomenologically and is equivalent
to the η2 term of the Furnstahl et al.’s effective Lagrangian
density, and especially whether this coupling is able to
reduce the nuclear incompressibility K0 and in the same
time to increase the effective nucleon mass M∗ in relativis-
tic mean-field theory. Section 2 gives the model and field
equations. Section 3 presents the nuclear matter equation
of state and related formulas for nuclear matter proper-
ties. The numerical calculation and results are given in
sect. 4. Section 5 discusses the inclusion of ρ meson field,
and Section 6 is the summary.

2 Model and field equations

Let us start with the following Lagrangian density:

L = ψ[γµ(i∂µ − gωωµ) − (M − gσφ)]ψ

+
1
2
[
(∂µ − ηg′ωωµ)φ(∂µ + ηg′ωωµ)φ − m2

σφ2
]

−1
4
FµνFµν +

1
2
m2

ωωµωµ , η = i and 1 , (1)

where Fµν = ∂µων − ∂νωµ, ψ, φ and ω are the nucleon,
σ and ω meson fields with masses M , mσ and mω, re-
spectively, while gσ, gω are the respective coupling con-
stants, and g′ω is the σ-ω coupling constant. η = i gives a
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σ-ω coupling similar to that introduced by usual covariant
derivatives, while η = 1 gives a gauge-like virtual coupling
similar to the imaginary coupling [8]. Mathematically, it
is equivalent to add a term η2g′2ω ωµωµ to m2

σ, which is just
the η2 term introduced recently by Furnstahl et al. in their
effective Lagrangian density LM (see eq. (52) of ref. [7]).
According to this equivalence, the present work can be
considered as a study of this η2 term in the Furnstahl
et al.’s nuclear effective field theory. The present model
reduces to the original Walecka model when the σ-ω cou-
pling constant is zero, g′ω = 0. Physically, higher-order
terms of this σ-ω coupling will give an effective nonlinear
σ field self-interaction.

For static nuclear matter, the field equations derived
from this Lagrangian density are reduced to the following
equations in the mean-field approximation:

(iγµ∂µ − gωγ0ω0 − M∗)ψ = 0, (2)

m∗2
σ φ = gσρs, (3)

m∗2
ω ω0 = gωρN , (4)

where the effective nucleon mass M∗, effective σ meson
mass m∗

σ and effective ω meson mass m∗
ω are defined, re-

spectively, as
M∗ = M − gσφ, (5)

m∗2
σ = m2

σ + η2g′2ω ω2
0 , (6)

m∗2
ω = m2

ω − η2g′2ω φ2, (7)

and ρs = 〈ψψ〉 is the scalar density, ρN = 〈ψγ0ψ〉 the
baryon density. For calculating these effective masses, the
above three equations can be rewritten as the following
self-consistent equations:

ξ =
M∗

M
= 1 − α

s

ρs

ρ0
, (8)

s = ξ2
σ =

m∗2
σ

m2
σ

= 1 +
ασ

v2

ρ2
N

ρ2
0

, (9)

v = ξ2
ω =

m∗2
ω

m2
ω

= 1 − αω

s2

ρ2
s

ρ2
0

, (10)

where ρ0 is the standard nucleon number density, α, ασ

and αω are the dimensionless composite parameters de-
fined, respectively, as

α =
g2

σρ0

m2
σM

, ασ =
η2g′2ω g2

ωρ2
0

m4
ωm2

σ

, αω =
η2g′2ω g2

σρ2
0

m4
σm2

ω

. (11)

It should be noted that ασ and αω are positive for η = 1
while negative for η = i. It is worthwhile to note that ασ

and αω are proportional to the Furnstahl et al.’s η2. For
example, it can be written as

ασ = −η2

2

( gσgωρ0

mσmωM

)2

. (12)

3 Nuclear matter properties

The nuclear matter equation of state derived from La-
grangian density (1) can be expressed in terms of the nu-
clear energy density E as e = E/ρN − M , and

E = Ek + Eσ + Eω, (13)

Ek =
M4ξ4

π2

∑
i=p,n

F1(ki/ξM), (14)

Eσ =
1
2
(1 − ξ)Mρs, (15)

Eω =
1
2
(1 − ξ)yMρs, y =

(s − 1)(2v − 1)
s(1 − v)

, (16)

where kp and kn are the proton and neutron Fermi mo-
menta, respectively, and the function Fm(x) is defined
as [9]

Fm(x) =
∫ x

0

dxx2m
√

1 + x2. (17)

The baryon density ρN and scalar density ρs can be ex-
pressed as

ρN =
1

3π2

∑
i=p,n

k3
i , (18)

ρs =
M3ξ3

π2

∑
i=p,n

f1(ki/ξM), (19)

where the function fm(x) is defined as [9]

fm(x) =
∫ x

0

dx
x2m

√
1 + x2

. (20)

Having the equation of state, the pressure p can be
derived as

p = −E +ρN
∂E
∂ρN

=
1
3
(Ek −Eσ −Mρs)+Eω − 2(1 − s)

s
Eσ.

(21)
Instead of Fermi momenta kp and kn, we will use the nu-
cleon density ρN = ρn + ρp and relative neutron excess
δ = (ρn − ρp)/ρN as independent variables for describing
the nuclear matter [10]. At the standard state ρN = ρ0,
δ = 0, the pressure should be zero,

p (ρ0, 0) = 0. (22)

In addition, the depth of the equation of state is related
to the nuclear volume energy a1 as

e(ρ0, 0) = −a1. (23)

The standard nucleon number density ρ0 defined by
eq. (22) is related to nuclear radius constant r0 and
Fermi momentum kF of standard nuclear matter as ρ0 =
3/4πr3

0 = 2k3
F/3π2.
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The generalized nuclear incompressibility K(ρN , δ)
can be defined [11] and derived as

K ≡ 9
∂p

∂ρN
=

3(p + E) + 12Eω

ρN
−

[
3Mρs +

12(3 − 2s)
s

Eσ

]

× 1
ρs

∂ρs

∂ρN
+

12(3 − s)
s

Eσ

s

∂s

∂ρN
− 12(1 − v)

1 − 2v

Eω

v

∂v

∂ρN
, (24)

ρN
∂s

∂ρN
= −2(1 − s)

[
1 − 2(1 − v)

(1 − ξ)v
ρN

∂ξ

∂ρN

]
, (25)

ρN
∂v

∂ρN
=

2(1 − v)
1 − ξ

ρN
∂ξ

∂ρN
, (26)

ρN
∂ρs

∂ρN
= Q + 3(ρs − Q)

ρN

ξ

∂ξ

∂ρN
, (27)

ρN
∂ξ

∂ρN
= −1

s

[
2(1 − ξ)(1 − s) +

αQ

ρ0

]

×
[
1 − 4(1 − s)(1 − v)

sv
+

3(1 − ξ)(ρs − Q)
ξρs

]−1

, (28)

Q =
M3ξ3

3π2

∑
i=p.n

ki

ξM
f ′
1(ki/ξM). (29)

The usual nuclear incompressibility K0 can be obtained
from K(ρN , δ) as

K0 = K(ρ0, 0) = 9
(
ρ2

N

∂2e

∂ρ2
N

)
0
, (30)

the subscript 0 stands for the standard state ρN = ρ0 and
δ = 0. In addition, the following formula for symmetry
energy J can be derived:

J ≡ 1
2

∂2e

∂δ2

∣∣∣
0

=
1
6

k2
F√

k2
F + M2ξ2

0

. (31)

This formula is the same as that given by the usual
Walecka model [12,13].

Around the standard state ρN = ρ0, δ = 0, the nuclear
equation of state and thus the nuclear matter properties
are specified essentially by the standard density ρ0, volume
energy a1, symmetry energy J , incompressibility K0, den-
sity symmetry L and symmetry incompressibility Ks [10],
where L and Ks are, respectively,

L ≡ 3
2

(
ρN

∂3e

∂ρN∂δ2

)
0

=
3

2ρ0

∂2p

∂δ2

∣∣∣
0
, (32)

Ks ≡ 9
2

(
ρ2

N

∂4e

∂ρ2
N∂δ2

)
0

= −6L +
1
2

∂2K

∂δ2

∣∣∣
0
. (33)
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Fig. 1. ασ and αω as function of α. The point αW = 0.4908
indicated by an arrow corresponds to the usual Walecka model
where ασ = αω = 0.

4 Numerical calculation and results

For the description of nuclear matter, there are three in-
dependent parameters α, ασ and αω in the present model.
The saturation point of nuclear matter (ρ0,a1) defined by
eqs. (22) and (23) can be used as input to determine ασ

and αω as function of α. The way is as follows. At the
standard state (ρN = ρ0, δ = 0), these two equations can
be solved for s and y,

s =
3(1 − ξ)Mρs

3ρ0(M − a1) − 2Ek − ξMρs
, (34)

y =
2ρ0(M − a1) − 2Ek − (1 − ξ)Mρs

(1 − ξ)Mρs
, (35)

and thus from eq. (16)

v =
sy + s − 1
sy + 2s − 2

. (36)

For given ρ0 and a1, s and v can be calculated by eqs. (34)-
(36) for a chosen ξ. Then α, ασ and αω can be calculated
by eqs. (8)-(10) for a chosen ξ. In our calculation, the nu-
clear radius constant r0 = 1.14 fm which corresponds to
the standard nucleon number density ρ0 = 0.161 fm−3,
the nuclear volume energy a1 = 16.0 MeV, nucleon mass
M = 938.9 MeV and constant h̄c = 197.327053 MeV· fm
are used. It is worthwhile to note that the value r0 =
1.14 fm is obtained from the data fit to nuclear charge
radii [14] extracted from the elastic electron scattering
data [15].

Figure 1 plots ασ and αω as function of α. At the
point α = αW = 0.4908 (indicated by an arrow), we have
ασ = αω = 0, and the present model reduces to Walecka
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Fig. 2. The dimensionless effective nucleon mass ξ, σ meson
mass ξσ and ω meson mass ξω as function of α. At the point
αW =0.4908 indicated by an arrow, ξ = 0.5437 and ξσ =ξω =1.
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Fig. 3. K0, J , L, and Ks as function of α. At the point αW =
0.4908 indicated by an arrow, K0 = 553 MeV, J = 20.2 MeV,
L = 70.6 MeV, and Ks = 88 MeV. At the lower limit αmin =
0.1037, K0 = 227 MeV.

model. For α > αW , ασ and αω are negative, which cor-
responds to η = i. For α < αW , ασ and αω are posi-
tive, which corresponds to η = 1. There is a lower limit
αmin = 0.1037, below this point there is no physical so-
lution, as the effective ω meson mass becomes imaginary,
ξ2
ω < 0. Figure 2 shows the dimensionless effective nucleon

mass ξ, the dimensionless effective σ meson mass ξσ and
the dimensionless effective ω meson mass ξω as function
of α. At the point αW , ξ = 0.5437 and ξσ = ξω = 1. From

αW to the right, ξ decreases as α increases, and we have
ξσ < 1 and ξω > 1. From αW to the left, ξ increases as α
decreases, and we have ξσ > 1 and ξω < 1. Figure 3 gives
K0, J , L, and Ks as function of α. At αW , K0 = 553 MeV,
J = 20.2 MeV, L = 70.6 MeV, and Ks = 88 MeV. As α
decreases, K0 decreases at first and then increases slowly,
passing through a very flat plateau, and finally decreases
rapidly to a lower limit 227 MeV. J and L as well as Ks

decrease slowly as α decreases. It is worthwhile to note
that Ks is negative in the low α side, in opposition to
what is obtained in the usual σ-ω model. Experimentally,
Ks obtained from the isoscalar giant monopole resonance
energy is between −566±1350 and 34±159 MeV [16]. On
the other hand, K0 increases to very high values rapidly
as α increases. In this aspect, the case of η = i is not
acceptable.

The dimensionless effective nucleon mass ξ at the sat-
uration point can be used as the third input to fix the
parameter α. For example, if ξ = 0.85 at the satura-
tion point, we have α = 0.1822. Correspondingly we have
ασ = 0.1134, αω = 0.2938, ξσ = 1.085, ξω = 0.895,
K0 = 501 MeV, J = 13.8 MeV, L = 30.1 MeV, and
Ks = −38 MeV, where the values of ξσ and ξω are those at
the saturation point. Instead of ξ, the nuclear incompress-
ibility K0 could be also used to fix α. If K0 = 250 MeV is
chosen, it yields α = 0.1050, ασ = 0.00783, αω = 2.642,
ξ = 0.939, ξσ = 1.295, ξω = 0.328, and Ks = −31.2 MeV,
where the values of ξ, ξσ and ξω are those at the saturation
point.

5 Inclusion of the ρ meson field

The symmetry energy J can be increased by including
the ρ meson field in the present model. In this case, the
additional term in the Lagrangian density is

Lρ = −1
4
Bµν ·Bµν +

1
2
m2

ρbµ·bµ − gρψγµτ ·bµψ, (37)

where Bµν = ∂µbν − ∂νbµ, bµ is the ρ meson field
with mass mρ and coupling constant gρ, and τ are the
isospin matrices. The resulting nucleon field equation, in
the mean-field approximation for static nuclear matter,
has an additional term −gρτ3γ

0b0:

(iγµ∂µ − gωγ0ω0 − gρτ3γ
0b0 − M∗)ψ = 0. (38)

The equation for the ρ meson field is

b0 = −gρρNδ

m2
ρ

, (39)

while eqs. (3) and (4) are the same. The additional terms
to the nuclear energy density, pressure, generalized incom-
pressibility, symmetry and density symmetry energies are,
respectively,

Eρ =
1
2
αρMρ2

Nδ2/ρ0 , pρ = Eρ , Kρ =
18Eρ

ρN
,

Jρ =
1
2
αρM , Lρ = 3Jρ , (40)
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where

αρ =
g2

ρρ0

m2
ρM

(41)

is the ρ meson dimensionless composite parameter. It is
easy to prove that there is no contribution to Ks from the
ρ meson field. It is worthwhile to note that the additional
term Jρ for the symmetry energy is the same as that given
by the usual linear σ-ω-ρ model [12,13].

It can be seen that, as Eρ = 0 at the standard state
where δ = 0, the inclusion of ρ meson produces no change
in nuclear energy density E , pressure p and generalized
incompressibility K at the standard state. Therefore, the
parameters α, ασ and αω have no change, and thus the
dimensionless effective masses ξ, ξσ and ξω are the same
even if the ρ meson field is included. The parameter αρ

can be fixed by using the symmetry energy J as the fourth
input, if parameters α, ασ and αω have been fixed.

6 Summary

In conclusion, the σ-ω coupling is introduced phenomeno-
logically in the linear σ-ω model to study the nuclear
matter properties. It is shown that, in comparison with
the usual Walecka model, not only the effective nucleon
mass M∗ but also the effective σ meson mass m∗

σ and
the effective ω meson mass m∗

ω are nucleon-density–
dependent. When the model parameters are fitted to
the nuclear radius constant r0 = 1.14 fm and volume
energy a1 = 16.0 MeV as well as to the effective nucleon
mass M∗ = 0.85M , the model yields m∗

σ = 1.09mσ and
m∗

ω = 0.90mω at the same nuclear saturation point,
and the nuclear incompressibility K0 = 501 MeV. This
incompressibility seems too high. On the other hand, if
the model parameters are fitted to K0 = 250 MeV, in
addition to r0 = 1.14 fm and a1 = 16.0 MeV, it yields
M∗ = 0.938M , m∗

σ = 1.295mσ and m∗
ω = 0.328mω at

the nuclear saturation point. This effective ω meson mass
seems too low. In addition, the lower limit of incompress-
ibility K0 = 227 MeV is not low enough. Therefore, our
conclusion is: Even if this σ-ω coupling is able to reduce
the nuclear incompressibility and also to increase the effec-
tive nucleon mass simultaneously, there is not yet enough
degree of freedom to adjust the parameters in order to
give a more reasonable result.
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